第 12 章 PPO 算法

12.1 简介

第 11 章介绍的 TRPO 算法在很多场景上的应用都很成功,但是我们也发现它的计算过程非常复杂,每一步更新的运算量非常大。于是,TRPO 算法的改进版——PPO 算法在 2017 年被提出,PPO 基于 TRPO 的思想,但是其算法实现更加简单。并且大量的实验结果表明,与 TRPO 相比,PPO 能学习得一样好(甚至更快),这使得 PPO 成为非常流行的强化学习算法。如果我们想要尝试在一个新的环境中使用强化学习算法,那么 PPO 就属于可以首先尝试的算法。

回忆一下 TRPO 的优化目标:

\(
\underset{\theta}{max}\mathbb{E}_{s\sim\nu^{\pi_{\theta_k}}}\mathbb{E}_{a \sim\pi_{\theta_k}(\cdot|s)}\bigg[ \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}A^{\pi_{\theta_k}}(s,a) \bigg]\)

\(s.t. \mathbb{E}_{s\sim\nu^{\pi_{\theta_k}}}\bigg[ D_{KL}\bigg(\pi_{\theta_k}(\cdot|s),\pi_{\theta}(\cdot|s)\bigg) \bigg] \le \delta \)

TRPO 使用泰勒展开近似、共轭梯度、线性搜索等方法直接求解。PPO 的优化目标与 TRPO 相同,但 PPO 用了一些相对简单的方法来求解。具体来说,PPO 有两种形式,一是 PPO-惩罚,二是 PPO-截断,我们接下来对这两种形式进行介绍。

12.2 PPO-惩罚

PPO-惩罚(PPO-Penalty)用拉格朗日乘数法直接将 KL 散度的限制放进了目标函数中,这就变成了一个无约束的优化问题,在迭代的过程中不断更新 KL 散度前的系数。即:

\(
\underset{\theta}{argmax} \mathbb{E}_{s\sim \nu^{\pi_{\theta_k}}}\mathbb{E}_{\alpha \sim \pi_{\theta_k}(\cdot|s)}\bigg[ \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}A^{\pi_{\theta_k}}(s,a) – \beta D_{KL}[\pi_{\theta_k}(\cdot|s),\pi_\theta(\cdot|s)]\bigg]
\)

令 \(d_k = D^{\nu^{\theta_k}}_{KL}(\pi_{\theta_k},\pi_\theta)\) ,\(\beta\) 的更新规则如下:

  • 如果 \(d_k \le \frac{\delta}{1.5}\) ,那么 \(\beta_{k+1} = \beta_k/2\)
  • 如果 \(d_k \gt \delta \times 1.5 \) ,那么 \(\beta_{k+1} = \beta_k \times 2\)
  • 否则 \(\beta_{k+1} = \beta_k\)

其中,\(\delta\) 是事先设定的一个超参数,用于限制学习策略和之前一轮策略的差距。

12.3 PPO-截断

PPO 的另一种形式 PPO-截断(PPO-Clip)更加直接,它在目标函数中进行限制,以保证新的参数和旧的参数的差距不会太大,即:

\( \underset{\theta}{\arg \max } \mathbb{E}_{s \sim \nu^{\pi_{\theta_k}}} \mathbb{E}_{a \sim \pi_{\theta_k}(\cdot \mid s)}\left[\min \left(\frac{\pi_\theta(a \mid s)}{\pi_{\theta_k}(a \mid s)} A^{\pi_{\sigma_{\theta_k}}}(s, a), clip \left(\frac{\pi_\theta(a \mid s)}{\pi_{\theta_k}(a \mid s)}, 1-\epsilon, 1+\epsilon\right) A^{\pi_{\sigma_{\theta_k}}}(s, a)\right)\right] \)

其中 \(clip(x,l,r):= max(min(x,r),l)\) ,即把 \(s\) 限制在 \([l,r]\) 内。上式中 \(\epsilon\) 是一个超参数,表示进行截断(clip)的范围。

如果 \(A^{\pi_{\theta_k}}(s,a) \gt 0\) ,说明这个动作的价值高于平均,最大化这个式子会增大 \(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}\) ,但不会让其超过 \(1 + \epsilon\) 。反之,如果 \(A^{\pi_{\theta_k}}(s,a) \lt 0\) ,最大化这个式子会减小 \(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}\) ,但不会让其超过 \(1 – \epsilon\) 。如图 12-1 所示。

图12-1 PPO-截断示意图

12.4 PPO 代码实践

与 TRPO 相同,我们仍然在车杆和倒立摆两个环境中测试 PPO 算法。大量实验表明,PPO-截断总是比 PPO-惩罚表现得更好。因此下面我们专注于 PPO-截断的代码实现。

首先导入一些必要的库,并定义策略网络和价值网络。

import gym
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import rl_utils

class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return F.softmax(self.fc2(x), dim=1)

class ValueNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim):
        super(ValueNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, 1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return self.fc2(x)

class PPO:
    ''' PPO算法,采用截断方式 '''
    def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
                 lmbda, epochs, eps, gamma, device):
        self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)
        self.critic = ValueNet(state_dim, hidden_dim).to(device)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(),
                                                lr=actor_lr)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),
                                                 lr=critic_lr)
        self.gamma = gamma
        self.lmbda = lmbda
        self.epochs = epochs  # 一条序列的数据用来训练轮数
        self.eps = eps  # PPO中截断范围的参数
        self.device = device

    def take_action(self, state):
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        probs = self.actor(state)
        action_dist = torch.distributions.Categorical(probs)
        action = action_dist.sample()
        return action.item()

    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'],
                              dtype=torch.float).to(self.device)
        actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(
            self.device)
        rewards = torch.tensor(transition_dict['rewards'],
                               dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'],
                                   dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'],
                             dtype=torch.float).view(-1, 1).to(self.device)
        td_target = rewards + self.gamma * self.critic(next_states) * (1 -
                                                                       dones)
        td_delta = td_target - self.critic(states)
        advantage = rl_utils.compute_advantage(self.gamma, self.lmbda,
                                               td_delta.cpu()).to(self.device)
        old_log_probs = torch.log(self.actor(states).gather(1,
                                                            actions)).detach()

        for _ in range(self.epochs):
            log_probs = torch.log(self.actor(states).gather(1, actions))
            ratio = torch.exp(log_probs - old_log_probs)
            surr1 = ratio * advantage
            surr2 = torch.clamp(ratio, 1 - self.eps,
                                1 + self.eps) * advantage  # 截断
            actor_loss = torch.mean(-torch.min(surr1, surr2))  # PPO损失函数
            critic_loss = torch.mean(
                F.mse_loss(self.critic(states), td_target.detach()))
            self.actor_optimizer.zero_grad()
            self.critic_optimizer.zero_grad()
            actor_loss.backward()
            critic_loss.backward()
            self.actor_optimizer.step()
            self.critic_optimizer.step()
# 接下来在车杆环境中训练 PPO 算法。
actor_lr = 1e-3
critic_lr = 1e-2
num_episodes = 500
hidden_dim = 128
gamma = 0.98
lmbda = 0.95
epochs = 10
eps = 0.2
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
    "cpu")

env_name = 'CartPole-v0'
env = gym.make(env_name)
env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = PPO(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda,
            epochs, eps, gamma, device)

return_list = rl_utils.train_on_policy_agent(env, agent, num_episodes)
Iteration 0:   0%|          | 0/50 [00:00<?, ?it/s]/tmp/ipykernel_9153/3883125925.py:48: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:233.)
  state = torch.tensor([state], dtype=torch.float).to(self.device)
Iteration 0: 100%|██████████| 50/50 [00:11<00:00,  4.32it/s, episode=50, return=196.900]
Iteration 1: 100%|██████████| 50/50 [00:15<00:00,  3.16it/s, episode=100, return=200.000]
Iteration 2: 100%|██████████| 50/50 [00:15<00:00,  3.15it/s, episode=150, return=200.000]
Iteration 3: 100%|██████████| 50/50 [00:14<00:00,  3.36it/s, episode=200, return=183.900]
Iteration 4: 100%|██████████| 50/50 [00:15<00:00,  3.14it/s, episode=250, return=200.000]
Iteration 5: 100%|██████████| 50/50 [00:16<00:00,  2.95it/s, episode=300, return=192.700]
Iteration 6: 100%|██████████| 50/50 [00:15<00:00,  3.23it/s, episode=350, return=175.400]
Iteration 7: 100%|██████████| 50/50 [00:15<00:00,  3.14it/s, episode=400, return=200.000]
Iteration 8: 100%|██████████| 50/50 [00:15<00:00,  3.13it/s, episode=450, return=200.000]
Iteration 9: 100%|██████████| 50/50 [00:16<00:00,  3.12it/s, episode=500, return=200.000]
episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()

mv_return = rl_utils.moving_average(return_list, 9)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()

倒立摆是与连续动作交互的环境,同 TRPO 算法一样,我们做一些修改,让策略网络输出连续动作高斯分布(Gaussian distribution)的均值和标准差。后续的连续动作则在该高斯分布中采样得到。

class PolicyNetContinuous(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNetContinuous, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc_mu = torch.nn.Linear(hidden_dim, action_dim)
        self.fc_std = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        mu = 2.0 * torch.tanh(self.fc_mu(x))
        std = F.softplus(self.fc_std(x))
        return mu, std

class PPOContinuous:
    ''' 处理连续动作的PPO算法 '''
    def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
                 lmbda, epochs, eps, gamma, device):
        self.actor = PolicyNetContinuous(state_dim, hidden_dim,
                                         action_dim).to(device)
        self.critic = ValueNet(state_dim, hidden_dim).to(device)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(),
                                                lr=actor_lr)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),
                                                 lr=critic_lr)
        self.gamma = gamma
        self.lmbda = lmbda
        self.epochs = epochs
        self.eps = eps
        self.device = device

    def take_action(self, state):
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        mu, sigma = self.actor(state)
        action_dist = torch.distributions.Normal(mu, sigma)
        action = action_dist.sample()
        return [action.item()]

    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'],
                              dtype=torch.float).to(self.device)
        actions = torch.tensor(transition_dict['actions'],
                               dtype=torch.float).view(-1, 1).to(self.device)
        rewards = torch.tensor(transition_dict['rewards'],
                               dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'],
                                   dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'],
                             dtype=torch.float).view(-1, 1).to(self.device)
        rewards = (rewards + 8.0) / 8.0  # 和TRPO一样,对奖励进行修改,方便训练
        td_target = rewards + self.gamma * self.critic(next_states) * (1 -
                                                                       dones)
        td_delta = td_target - self.critic(states)
        advantage = rl_utils.compute_advantage(self.gamma, self.lmbda,
                                               td_delta.cpu()).to(self.device)
        mu, std = self.actor(states)
        action_dists = torch.distributions.Normal(mu.detach(), std.detach())
        # 动作是正态分布
        old_log_probs = action_dists.log_prob(actions)

        for _ in range(self.epochs):
            mu, std = self.actor(states)
            action_dists = torch.distributions.Normal(mu, std)
            log_probs = action_dists.log_prob(actions)
            ratio = torch.exp(log_probs - old_log_probs)
            surr1 = ratio * advantage
            surr2 = torch.clamp(ratio, 1 - self.eps, 1 + self.eps) * advantage
            actor_loss = torch.mean(-torch.min(surr1, surr2))
            critic_loss = torch.mean(
                F.mse_loss(self.critic(states), td_target.detach()))
            self.actor_optimizer.zero_grad()
            self.critic_optimizer.zero_grad()
            actor_loss.backward()
            critic_loss.backward()
            self.actor_optimizer.step()
            self.critic_optimizer.step()

创建环境Pendulum-v0,并设定随机数种子以便重复实现。接下来我们在倒立摆环境中训练 PPO 算法.

actor_lr = 1e-4
critic_lr = 5e-3
num_episodes = 2000
hidden_dim = 128
gamma = 0.9
lmbda = 0.9
epochs = 10
eps = 0.2
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
    "cpu")

env_name = 'Pendulum-v1'
env = gym.make(env_name)
env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]  # 连续动作空间
agent = PPOContinuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
                      lmbda, epochs, eps, gamma, device)

return_list = rl_utils.train_on_policy_agent(env, agent, num_episodes)
Iteration 0: 100%|██████████| 200/200 [02:03<00:00,  1.62it/s, episode=200, return=-1093.692]
Iteration 1: 100%|██████████| 200/200 [02:11<00:00,  1.52it/s, episode=400, return=-1118.950]
Iteration 2: 100%|██████████| 200/200 [02:20<00:00,  1.43it/s, episode=600, return=-666.344]
Iteration 3: 100%|██████████| 200/200 [02:22<00:00,  1.41it/s, episode=800, return=-446.496]
Iteration 4: 100%|██████████| 200/200 [02:24<00:00,  1.38it/s, episode=1000, return=-422.619]
Iteration 5: 100%|██████████| 200/200 [02:26<00:00,  1.36it/s, episode=1200, return=-368.756]
Iteration 6: 100%|██████████| 200/200 [01:42<00:00,  1.94it/s, episode=1400, return=-280.215]
Iteration 7: 100%|██████████| 200/200 [01:27<00:00,  2.29it/s, episode=1600, return=-223.799]
Iteration 8: 100%|██████████| 200/200 [01:26<00:00,  2.30it/s, episode=1800, return=-402.121]
Iteration 9: 100%|██████████| 200/200 [01:27<00:00,  2.30it/s, episode=2000, return=-311.049]
episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()

mv_return = rl_utils.moving_average(return_list, 21)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()

12.5 总结

PPO 是 TRPO 的一种改进算法,它在实现上简化了 TRPO 中的复杂计算,并且它在实验中的性能大多数情况下会比 TRPO 更好,因此目前常被用作一种常用的基准算法。需要注意的是,TRPO 和 PPO 都属于在线策略学习算法,即使优化目标中包含重要性采样的过程,但其只是用到了上一轮策略的数据,而不是过去所有策略的数据。

PPO 是 TRPO 的第一作者 John Schulman 从加州大学伯克利分校博士毕业后在 OpenAI 公司研究出来的。通过对 TRPO 计算方式的改进,PPO 成为了最受关注的深度强化学习算法之一,并且其论文的引用量也超越了 TRPO。

12.6 参考文献

[1] SCHULMAN J, FILIP W, DHARIWAL P, et al. Proximal policy optimization algorithms [J]. Machine Learning, 2017.

打赏作者

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

CAPTCHA