四个基站的位置坐标为:

center1 = (80, 80)
center2 = (80, 280)
center3 = (280, 80)
center4 = (280, 280)

假设一个点 pos=[x,y]

为了进行区域高维表示(embedding),需要将其扩展为6个维度,pos’ = [x,y,x’,y’,h,w]

选择一个基站为例:四个象限,每个象限根据 (x-center)*(y-center)的正负判断,然后做出对应的向中心的靠拢的2像素宽度的矩形框。

def get_box(self,pos,center,w):
    """
    position: [x,y]
    center:   [x0,y0]
    w:        constant stands for the box's weight and height
    return:   [x,y,x',y',w,w]
    """
    position_b1 = [e for e in pos]
    result = []
    for position in position_b1:
        X = position[0]-center[0]
        Y = position[1]-center[1]
        condition = X*Y
        if condition > 0 :
            if X > 0:
                result.append([position[0]-2, position[1]-2, w, w])
            else:
            result.append([position[0]+2, position[1]+2, w, w])
        else:
            if X > 0:
                result.append([position[0]-2, position[1]+2, w, w])
            else:
            result.append([position[0]+2, position[1]-2, w, w])
    result = torch.tensor(result).to(pos.device)
    return torch.cat([pos, result],-1)

然后再输入到embedding的代码中:参考:https://zhuanlan.zhihu.com/p/351299548

def coordinate_embeddings(self,boxes, dim):
    """
    Coordinate embeddings of bounding boxes
    :param boxes: [K, 6] ([x1, y1, x2, y2, w_image, h_image])
    :param dim: sin/cos embedding dimension
    :return: [K, 4, 2 * dim]
    """

    num_boxes = boxes.shape[0]
    w = boxes[:, 4]
    h = boxes[:, 5]

    # transform to (x_c, y_c, w, h) format
    boxes_ = boxes.new_zeros((num_boxes, 4))
    boxes_[:, 0] = (boxes[:, 0] + boxes[:, 2]) / 2
    boxes_[:, 1] = (boxes[:, 1] + boxes[:, 3]) / 2
    boxes_[:, 2] = boxes[:, 2] - boxes[:, 0]
    boxes_[:, 3] = boxes[:, 3] - boxes[:, 1]
    boxes = boxes_

    # position
    pos = boxes.new_zeros((num_boxes, 4))
    pos[:, 0] = boxes[:, 0] / w * 100
    pos[:, 1] = boxes[:, 1] / h * 100
    pos[:, 2] = boxes[:, 2] / w * 100
    pos[:, 3] = boxes[:, 3] / h * 100

    # sin/cos embedding
    dim_mat = 1000 ** (torch.arange(dim, dtype=boxes.dtype, device=boxes.device) / dim)
    sin_embedding = (pos.view((num_boxes, 4, 1)) / dim_mat.view((1, 1, -1))).sin()
    cos_embedding = (pos.view((num_boxes, 4, 1)) / dim_mat.view((1, 1, -1))).cos()

    return torch.cat((sin_embedding, cos_embedding), dim=-1)
打赏作者

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

CAPTCHA